Patient Preparation : Echocardiographic Evaluation of TAVI

TAVI Summit 2014 – Seoul, 8th August, 2014

Professor Cheuk-Man YU

MBChB, MRCP, FHKCP, FHKAM, FRACP, MD, FRCP(Edin/London), FACC

Professor of Medicine & Therapeutics Director (Clinical Sciences), Institute of Vascular Medicine Director, HEART Centre Prince of Wales Hospital Faculty of Medicine The Chinese University of Hong

Echo Assessment in TAVI

Pre-TAVI Assessment by Echo

A ortic annular sizing by 2D and 3D echo
Assessment of aortic stenosis
Assessment of valve configuration
Assessment of aortic regurgitation
Other relevant echo findings

Aortic Annular Sizing by 2D and 3D Echo

LVOT Diam 2.0 cm

67bpm

Annulus – LVOT Measurement

Brief Introduction of TAVI

Comparisons between two types of valves

K.E. O'Sullivan et al. European Journal of Cardio-Thoracic Surgery 2014;45:826–833

Device Size Selection : Aortic Annulus Ranges

	Diameter Range (mm)	Perimeter Range (mm)	Area Range (mm ²)
23	18 - 20	56.5 - 62.8	254.5 - 314.2
26	20 - 23	62.8 - 72.3	314.2 - 415.5
29	23 - 27	72.3 - 84.8	415.5 - 572.6
31	26 - 29	81.7 - 91.1	530.9 – 660.5

Recent evidence supports perimeter as the recommended method for TAVI sizing

Device Size Selection : Sinus of Valsalva and Ascending Aorta Ranges

	Sinus of Valsalva Diameter (mm)	Sinus of Valsalva Height (mm)	Ascending Aorta Maximum Diameter (mm)
23	≥ 25	≥ 15	≤ 34
26	≥ 27	≥ 15	≤ 40
29	≥ 29	≥ 15	≤ 43
31	≥ 29	≥ 15	≤ 43

Assessment of Aortic Stenosis Severity

Indicator	Mild	Moderate	Severe
Jet Velocity (m/s)	< 3.0	3.0 – 4.0	> 4.0
Mean Gradient (<i>mmHg</i>)	< 25	25 – 40	> 40
Valve Area (cm²)	> 1.5	1.0 – 1.5	< 1.0
Valve Area Index (cm ² /m ²)	_	_	< 0.6

Bonow RO. ACC/AHA 2006 Guidelines for the Management of Patients with Valvular Heart Disease. Circulation 2006;114:84-231.

Assessment of Aortic Stenosis The continuity equation

Aortic Valve Area (cm2) = $\frac{\text{LVOT diameter2} \times 0.78540 \times \text{LVOT} - \text{VTI}}{\text{Aortic Valve VTI}}$

Echo Assessment Pre- / Post-TAVI

Transvalvular gradient

Baseline

1-Year Follow Up

Assessment of Aortic Stenosis

Planimetry

2D Aortic Valve Area

3D Aortic Valve Area

Formula for Aortic Area Calculation with Threedimensional Echocardiography

Gutiérrez-Chico J L et al. *Eur Heart J* 2008;29:1296-1306

Echo Assessment Post TAVI

LV systolic function

Baseline

1-year Follow Up

LVEF: 45% 3D mass: 202g LVEF: 64% 3D mass: 136g

Presence of Aortic Regurgitation before TAVI

Dilated Aortic Root before TAVI

Assessment of Valve Configuration

Assessment of severity and location of calcification

Bicuspid or tricuspid aortic valve with AS

Assessment of Severity and Location of Calcification

Figure 2. Identification of sites of AR after TAVI using TEE. Short-axis view, at level of proximal (ventricular) end of prosthesis, permits visualization of origin of paravalvular regurgitation. Interatrial septum helps to identify the noncoronary cusp (A). (B) Six possible sites of paravalvular regurgitation. c = commissure site; IAS = interatrial septum; LA = left atrium; LC = left coronary cusp; NC = noncoronary cusp; RA = right atrium; RC = right coronary cusp; w = aortic wall site.

Assessment of Severity and Location of Calcification

- **Traditionally by MSCT scan**
- **Now possible with the use of dedicated echo software**

Bicuspid Aortic Valve with AS

In general considered as contraindication
 Risk of poor seating
 Paravalvular regurgitation

Main reason : severe distortion of the native valve leaflets

TAVI for Bicuspid Aortic Valve with AS

Author	Year	п	Edwards SAPIEN or XT Valve	Medtronic CoreValve System	Balloon Predilation	Route	Postdeployment Prosthetic Shape	Postdeployment Imaging	Postdeployment Mean Gradient	Post- deployment AR	Follow-u
Delgado et alº	2009	1	26 mm		NR	TA	Circular	СТ	10 mm Hg	NR	1 mo
Chiam et al ¹⁰	2010	1	23 mm		Yes	TF	Circular	СТ	20 mm Hg	Trivial	6 mo
Ferrari et al ¹¹	2010	1	26 mm		NR	TA	NR	Echo	6 mm Hg	Absent	In- hospital
Wijesinghe et al ¹²	2010	11	26 mm (n=10) 23 mm (n=1)		Yes	TF=7 TA=4	Circular	Echo	See text	See text	See text
Jilaihawi et al13	2010	1		29 mm	Yes	TF	Elliptical	Echo	9.8 mm Hg*	Mild*	2-у
Raja et al¹⁴	2011	1	26 mm		Yes	TF	Circular	СТ	NR	Mild	10 mo
Kochman et al15	2012	1		29 mm	NR	TF	Elliptical	СТ	16 mm Hg	NR	NR
Baralis et al ¹⁶	2012	1	29 mm XT		Yes	TA	Circular	СТ	NR	Mild	1 mo
Himbert et al ¹⁷	2012	15		29 mm (n=13) 26 mm (n=2)	Yes	TF=14 TS=1	Elliptical	CT (n=11)	See text	See text	See text
Zegdi et al18	2012	1	23 mm XT		NR	TF	Elliptical	СТ	6 mm Hg	Absent	1 mo
Maluenda et al ¹⁹	2013	1	29 mm XT		Yes	TF	Circular	СТ	NR	Absent	1 mo
Hayashida et al ²³	2013	21	n=11 23 mm (n=5) 26 mm (n=2) 29 mm (n=4)	n=10 29 mm (n=5) 31 mm (n=5)	NR	TF=13 TA=3 TAo=5	Elliptical†	CT†	See text	See text	See text

CT indicates computed tomography; NR, not reported; TA, transapical; TAo, transaortic; TF, transfemoral; and TS, transubclavian.

*Two-year values.

+Postprocedural CT not systematically performed on all patients (number not specified).

O'Sullivan and Windecker et al. Circ Cardiovasc Interv. 2013;6:204-206

Bicuspid Aortic Valve with AS

Potential success: calcified bicuspid AV and predominant aortic stenosis

- **Identification if high risk patients :**
 - Bulky leaflets
 - Enlarged aortic root
 - Dilated ascending aorta
 - Significant aortic regurgitation

Other Relevant Echo Findings

Degree of LVH
LVEF
LV volume
Diastolic function and filling pressure
Mitral valve disease

Degree of LVH

- **Pressure overload of AS causes LVH**
- **Mathebra Schultz Associated with LV systolic & diastolic dysfunction**
- **Considered** as the risk factor for cardiac morbidity and mortality

Degree of LVH

N=135

Echo done at baseline and 6m

Figure 3 Changes in LVM and percentage of LVM regression after TAVI.

Vizzardi et al . J Am Soc Echocardiogr 2012;25:1091-8

Impact of LVEF on Outcome after TAVI

- N=147
- **FU: 15 months**
- **MACE:** higher in those with reduced LVEF

Ewe et al. Am Heart J 2010;160:1113-20

LV Volume and LVEF

Abnormal LV Filling Patterns

E/E': Marker of LV Filling Pressure

LV Diastolic Function after TAVI

Vizzardi et al . J Am Soc Echocardiogr 2012;25:1091-8

LV Diastolic Function after TAVI

Vizzardi et al . J Am Soc Echocardiogr 2012;25:1091-8

Incidence of Mitral Regurgitation before TAVI

Nombela-Franco et al. J Am Coll Cardiol 2014;63:2643-58

Causes of Mitral Regurgitation before TAVI

Nombela-Franco et al. J Am Coll Cardiol 2014;63:2643–58

Changes in Mitral Regurgitation after TAVI

Nombela-Franco et al. J Am Coll Cardiol 2014;63:2643–58

Doppler Echo Assessment Post TAVI

Transvalvular gradient

Baseline

1-Year Follow Up

Team Work

